Motorized Breakers Make Control Easy!

All relay based systems **MUST** be electrically protected by a circuit breaker. Motorized breakers eliminate the need for wall or rack mounted relay based systems...

- Saves Space
- Saves redundant installation and hardware costs!
- UL listed circuit breaker with built-in internal switching capability manufactured by [SQUARE D]
- Time tested, in service over 20 years
- Available in 15A, 20A and 30A - 1, 2 or 3 poles for remote control of all electrical loads
- Robust - rated for 60k on, off, on cycles
- Energy efficient - NO holding current or heat sinks required to maintain state - Runs cool, lasts long!
- Automatic load shedding and brownout protection in every panel.
- Emergency override function standard on every panel.

Specifying in 5 easy steps

1. Choose the control method: **SC**=RS-232
2. Choose the cabinet style: **LC** for load center and **P** for panelboard
3. Choose three phase (3) or single phase (1)
4. Choose the number of circuits: **26** or **41** Panelboards are only available in 41 circuits.
5. Choose the maximum number of controlled circuits: **10,20, 30, 40, or 50**.

EX: **SCLC 326-20** = a 3 phase load center with 26 circuits (24 max controlled)
SCP 341-30 = a 3 phase panel board with 41 circuits (30 max controlled)

All panels and load centers
AVAILABLE MODELS

See www.LynTec.com for model specific design and submittal PDFs

LOAD CENTERS

SCLC 326-xx-Mxxx RS-232 Controlled Load Center
3Ø, 208Y/120 Vac, 4 wire. — 100 Amp Main Breaker Standard

LynTec
RS-232 Controlled Load Center

Model Numbers

SCLC 326-10-Mxxx
(Up to 10 RS-232 controlled circuits)
SCLC 326-20-Mxxx
(Up to 20 RS-232 controlled circuits)
SCLC 326-30-Mxxx
(Up to 30 RS-232 controlled circuits)
Square D QO327M100 Load Center with LynTec low-voltage sidecar.

Standard back-fed Main Breaker:
SCLC 326-xx-Mxxx
Part# suffix — (Up to 26 RS-232 controlled circuits)

RS-232 CONTROL POWER
10A supplied installed

Main Lug Only - MLO option
Remove Back fed main and top feed as a MLO to gain 3 circuits.
Feed from a protected disconnect.
Provides access to branch breaker positions 1, 3, & 5.
Model number becomes a
SCLC 326-10-MLO
(10 RS-232 controlled circuits)
SCLC 326-20-MLO
(20 RS-232 controlled circuits)
SCLC 326-30-MLO
(Up to 29 RS-232 controlled circuits)
(Holds up to 29 one pole breakers)
125 Amp. Panel Bus Rating
Wire size: #6 - 2/0 Cu

Outside dimensions:
20.9" w., 29.8" h., 3.9" d.

SCP 341-xx-M400 RS-232 Controlled Panelboard
3Ø, 208Y/120 Vac, 4 wire. — 400 Amp Main Breaker Standard

LynTec
RS-232 Controlled Panelboard

Model Numbers

SCP 341-10-M400
(Upto 10 RS-232 controlled circuits)
SCP 341-20-M400
(Upto 20 RS-232 controlled circuits)
SCP 341-30-M400
(Upto 30 RS-232 controlled circuits)
SCP 341-40-M400
(Upto 40 RS-232 controlled circuits)
SCP 341-50-M400
(Upto 41 RS-232 controlled circuits - limited by 42 circuit code rule)

Square D NQOD-NL MB Panel with LynTec low-voltage sidecar.
Standard SCP 225A Main Breaker: 225 Amp. - 65k AIR - MJG36225

Main Breaker options
Part# suffix — Bold face = Amps
-MHG3125, -MUG3150, -MUG3175 or -MJG3200

Wire Sizes
Main Breaker: 3/0 - 350 kcmil Al/Cu
200% Neutral has one feed lug that accepts 2 - 250 kcmil Cu wires

Outside dimensions:
28.06" w., 50" h., 6.13" d.

Knockout panels supplied in both ends
Optional isolated technical ground
sidecar not shown

PANELBOARDS

SCLC 341-xx-Mxxx RS-232 Controlled Load Center
3Ø, 208Y/120 Vac, 4 wire. — 225 Amp Main Breaker Standard

LynTec
RS-232 Controlled Load Center

Model Numbers

SCLC 341-10-Mxxx
(Up to 10 RS-232 controlled circuits)
SCLC 341-20-Mxxx
(Up to 20 RS-232 controlled circuits)
SCLC 341-30-Mxxx
(Up to 30 RS-232 controlled circuits)
SCLC 341-40-Mxxx
(Up to 40 RS-232 controlled circuits)

Square D QO342MQ225 Load Center with LynTec low-voltage sidecar.
Standard Main Breaker:
SCLC 341-xx-Mxxx
Part# suffix — Bold face = Amps
-M3150 or -M3200
Square D QDL32xxx series
(All 25k AIR) [Amps Interrupt Rating]

Wire Sizes
Main Breaker:
350 kcmil Al or 250 kcmil Cu.
100% Neutral has one feed lug
1- 350 kcmil Al or 1- 250 kcmil Cu
Outside dimensions:
20.9" w., 39.3" h., 3.9" d.

SCP 341-xx-Mxxx RS-232 Controlled Panelboard
3Ø, 208Y/120 Vac, 4 wire. — 225 Amp Main Breaker Standard

LynTec
RS-232 Controlled Panelboard

Model Numbers

SCP 341-10-Mxxx
(Upto 10 RS-232 controlled circuits)
SCP 341-20-Mxxx
(Upto 20 RS-232 controlled circuits)
SCP 341-30-Mxxx
(Upto 30 RS-232 controlled circuits)
SCP 341-40-Mxxx
(Upto 40 RS-232 controlled circuits)
SCP 341-50-Mxxx
(Upto 41 RS-232 controlled circuits - limited by 42 circuit code rule)

Square D NQOD-NL MB Panel with LynTec low-voltage sidecar.
Standard SCP 225A Main Breaker: 225 Amp. - 65k AIR - MJG36225

Main Breaker options
Part# suffix — Bold face = Amps
-MHG3125, -MUG3150, -MUG3175 or -MJG3200

Wire Sizes
Main Breaker: 1 #1- 600 kcmil Cu or
100% Neutral has one feed lug that accepts 2 - 250 kcmil Cu wires

Outside dimensions:
28.06" w., 68.2" h., 6.13" d.

Optional isolated technical ground
ARCHITECT'S and ENGINEER'S SPECIFICATIONS
SCP Series Serial Controlled Panelboard

All A.C. power for the A/V system shall be supplied from a source capable of being remote controlled via RS-232 control protocol.

Circuits shall be individually addressable providing on and off control via RS232 protocol.

A means of visual operator feedback shall provide an indication of circuit on/off status locally via LEDs.

The system shall have brownout (undervoltage) protection; monitoring the line voltage and triggering an automatic shutdown if the line voltage drops below 95 volts for more than 2 seconds. The system shall automatically return circuits to on state when power resumes and remains above 105 volts for more than 2 seconds without operator intervention.

The system shall have emergency shutdown capability triggered by external contacts or the system operator.

Un-motorized circuits, as required, shall be supplied from the same A.C. source so that a single lever main circuit breaker is dedicated to the system.

Three phase panelboards shall have 200% neutrals.

Single phase panelboards shall have a single neutral.

Panelboards shall have a separate and attached isolated technical ground section.

All branch circuit breakers shall be bolt-on.

The Serial Controlled Panelboard system shall be the LynTec model SCP xxx series Panelboard.

Manufacturer shall warrant specified equipment to be free from defects in materials and workmanship as follows: at least (15) months from date of purchase for line voltage equipment; at least (5) years from the date of purchase for control electronics.

LynTec — 800-724-4047 — www.LynTec.com

Models:

Single Phase, 65k AIR: SCP 141-12, SCP 141-24, SCP 141-36, SCP 141-48, SCP 141-60

Balanced Power, 60v-0-60v, 65k AIR: SCP 119-12, SCP 119-24

Three Phase, 65k AIR: SCP 341-12, SCP 341-24, SCP 341-36, SCP 341-48, SCP 341-60

This document available in Word format:
http://www.lyntec.com/139-0578_SCP_A&E_Spec.docx

Most recent version pdf:
http://www.lyntec.com/139-0578_SCP_A&E_Spec.pdf
SC-10 RS232 PROTOCOL

Commands set

<table>
<thead>
<tr>
<th>Command</th>
<th>Decimal</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start byte</td>
<td>176</td>
<td>0xB0</td>
</tr>
<tr>
<td>Stop byte</td>
<td>240</td>
<td>0xF0</td>
</tr>
<tr>
<td>Board address</td>
<td>1 - 99</td>
<td>0x01 - 0x63</td>
</tr>
<tr>
<td>Output address</td>
<td>1 - 10</td>
<td>0x01 - 0x0A</td>
</tr>
<tr>
<td>Output ON</td>
<td>180</td>
<td>0xB4</td>
</tr>
<tr>
<td>Output OFF</td>
<td>181</td>
<td>0xB5</td>
</tr>
<tr>
<td>Output status</td>
<td>182</td>
<td>0xB6</td>
</tr>
<tr>
<td>Status of all outputs</td>
<td>189</td>
<td>0xBD</td>
</tr>
<tr>
<td>All ON</td>
<td>186</td>
<td>0xBA</td>
</tr>
<tr>
<td>All OFF</td>
<td>187</td>
<td>0xBB</td>
</tr>
<tr>
<td>Set/clear output verification status*</td>
<td>190</td>
<td>0xBE</td>
</tr>
</tbody>
</table>

*Not be implemented - autoscan can distinguish between RR7 and RR9

2. Commands description

2.1 Outputs ON command

0xB0, board_address, 0xB4, output_address_1, ..., output_address_m, 0xF0
m<=10 (0x0A)

Example: B0 01 B4 04 0A F0, turns on outputs at 4 and 10, on 1st card

2.2 Outputs OFF command

0xB0, board_address, 0xB5, output_address_1, ..., output_address_n, 0xF0
n<=10 (0x0A)

Example: B0 02 B5 09 F0, turns off output at 9, on 2nd card

2.3 Outputs ON/OFF command

0xB0, board_address, 0xB4, output_address_1, ..., output_address_m, 0xB5, output_address_1, ..., output_address_n, 0xF0
m and n<=10 (0x0A)

Example: B0 01 B4 04 0A B5 09 F0, turns on output at 4 and 10, and turns off output at 9, on 1st card

2.4 Outputs status

0xB0, board_address, 0xB6, output_address_1, ..., output_address_m, 0xF0
m<=10 (0x0A)

Example: B0 03 B6 04 0A F0, status of outputs at 4 and 10, on 3rd card

2.5 Status of all outputs

0xB0, board_address, 0xBD, 0xF0

2.6 All ON - turn on all available outputs

0xB0, board_address, 0xBA, 0xF0
2.7 All OFF - turn off all available outputs

0xB0, board_address, 0xBB, 0xF0

2.8 Set/clear output verification status (NOT IMPLEMENTED)

0xB0, board_address, 0xBE, output_address_i, output_ver_status_i, output_address_j, output_ver_status_j, ...
output_address_n, output_ver_status_n, 0xF0

output_address_i, output_ver_status_i, output_address_j, output_ver_status_j, ..., output_address_n, output_ver_status_n - addresses and status of outputs, n<=10

Output_ver_status coding

<table>
<thead>
<tr>
<th>Status</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable</td>
<td>0x01</td>
</tr>
<tr>
<td>Enable</td>
<td>0x02</td>
</tr>
</tbody>
</table>

When verification status of the output is disabled, the board will always respond with “no verification” status for this output. Verification status shall be disabled for all outputs driving RR7 relays.

3. Responses

3.1 Output status codes

<table>
<thead>
<tr>
<th>Status</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>0x01</td>
</tr>
<tr>
<td>On</td>
<td>0x02</td>
</tr>
<tr>
<td>Fault</td>
<td>0x03</td>
</tr>
<tr>
<td>No verification, expected off</td>
<td>0x04</td>
</tr>
<tr>
<td>No verification, expected on</td>
<td>0x05</td>
</tr>
<tr>
<td>Empty</td>
<td>0x06</td>
</tr>
</tbody>
</table>

3.2 Output status change response

This response is transmitted when output(s) change(s) status for ANY reason (RS232 command, button push, brown out, recover from brown out, emergency override, recover from emergency override).

0xB0, board_address, 0xB6, output_address_i, output_status_i, ..., output_address_n, output_status_n, 0xF0

n<=10 (0x0A)

Example: B0 01 B6 04 01 05 02 0A 06 F0, output at 4 is off, at 5 is on, and at 10 is empty, on 1st card

3.3 Status of all ten outputs (transmitted only in reply to status of all outputs command)

0xB0, board_address, 0xBD, byte_1, ..., byte_10, 0xF0

Example: B0 02 BD 01 01 01 01 01 02 02 02 06 F0, outputs 1 thru 5 are off, 6 thru 9 are on, and 10 is empty, on 2nd card

4. AMX Device Discovery

Beacon request: “AMXR”

Beacon: “AMXB<SDKClass=Utility><Make=Lyntec><Model=SC10><Revision=1.0.0>\r”
SCP 341-xx-M125 to -M225

锛堥 控制器电路数
10, 20, 30, 40 or 50.

柜体尺寸: 28.69" w. x 50" h. x 6.13" d.

 knockout panels supplied in both ends.

RS-232 CONTROL POWER

10A un-motorized breaker supplied installed.

Square D NOOD-NL MB Panel
with LynTech sidecar.

Standard SCP Main Breaker:
225 Amp. - 65k AIR - M225
Square D MGP369225

Main Breaker options — Part 1 suffix
Bold = Amps -M125, M150,
-M175 or 4/200
(85k AIR)
(Amps Interrupt Rating)
Main Breaker wire: 3/0-350 kcmil Al/Cu.
200% Neutral has one feed lug that accepts two 250 kcmil Cu wires.

SCP 341-xx-M125 controls
to -M225 RS-232 Panelboard.

Breaker types, sizes, positions and connections

Transfer as-built information

to the door label upon completion.

Keep this sheet for as-built
documentation.

Available as PDF download
www.lyntec.com/139-0574_SCP341_Plnr.pdf
LynTec
Lighting Control Panelboard

MODEL NUMBERS
SCP 341-10-Mxxxx (Up to 10 DMX controlled circuits)
SCP 341-20-Mxxxx (Up to 20 DMX controlled circuits)
SCP 341-30-Mxxxx (Up to 30 DMX controlled circuits)
SCP 341-40-Mxxxx (Up to 40 DMX controlled circuits)
SCP 341-50-Mxxxx (Up to 41 DMX controlled circuits - limited by 42 circuit code rule)

Square D NQOD-NL MB Panel with LynTec low-voltage sidecar.
Standard SCP-225A Main Breaker: 225 Amp. - 65k AIR - MJG32225
Square D MJG32xxx or MHG32xxx series (all 65k AIR) [Amps Interrupt Rating]

Main Breaker options
Part suffix — Bold face = Amps — MJG3125, MJG3150, MJG3175 or MJG3200

Wire Sizes:
Main Breaker: 3/0 - 350 kcmil Al/Cu.
200% Neutral has one feed lug that accepts 2 - 250 kcmil Cu wires.

Surface Mount
Outside Dimensions:
28.06” w., 50.2” h., 6.13” d.

125-225 Amp SCP Outline Drawing

High voltage interior may be field inverted for top feed
SCP 341 with Optional ITG Sidecar
Outline Drawing

LynTec
SCP 341-xx (65k AIR main)
RS-232 Controlled Panelboard

Square D NQOD-NL MB Panel
with LynTec sidecars.

Standard SCP Main Breaker:
225 Amp. - 65k AIR - MJG32225
Main Breaker options — Part# suffix
Bold = Amps
-MHG3110, -MHG3125,
-MJG3150, -MJG3175 or -MJG3200
(all 65k AIR)
[Amps Interrupt Rating]

Main Breaker wire:
#4-350 kcmil Al or 250 kcmil Cu.
200% Neutral has one feed lug that
accepts two 250 kcmil Cu wires.

Outside dimensions
36" w., 50" h., 6.13" d.

High voltage interior may be
field inverted for top feed

Isolated
Technical
Ground
Bar

Feed
4/0 max.

Controller

1

2

3

4

5

Enclosure
ground
bar.

23 position
14-4 ga.

Controller
POWER

NQOD-NL Panel
200% Neutrals.
2 — 250 kcmil max.

Iso-Tech
Ground
Branches:
46 position
14 - 4 ga.

1.5" I.D.
wire
access
nipples
between
sidecars
&
Panelboard

139-0574-00 SCP ITG Outline Drawing 9/27/11
Selection Information

H- and J- frame Thermal-magnetic Molded Case

150 and 250 Ampere Frame — Class 611

<table>
<thead>
<tr>
<th>Circuit Breaker Type</th>
<th>HD</th>
<th>HG</th>
<th>HJ</th>
<th>HL</th>
<th>JD</th>
<th>JG</th>
<th>JJ</th>
<th>JL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Poles</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Interruption Ratings

<table>
<thead>
<tr>
<th>UL/CSA/NOM 50/60 Hz</th>
<th>240 V</th>
<th>480V/277 Vac</th>
<th>480 Vac</th>
<th>600V/347 Vac</th>
<th>600 Vac</th>
<th>125/250 Vac</th>
<th>500 Vac</th>
<th>480 Vac</th>
<th>480 Vac</th>
<th>600 Vac</th>
<th>600 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>65</td>
<td>100</td>
<td>125</td>
<td>20</td>
<td>20</td>
<td>125</td>
<td>TBD</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>125</td>
</tr>
</tbody>
</table>

DC Ratings

<table>
<thead>
<tr>
<th>UL/CSA/NOM 50/60 Hz</th>
<th>125/250 Vac</th>
<th>500 Vdc</th>
<th>480 Vac</th>
<th>480 Vac</th>
<th>600 Vac</th>
<th>600 Vac</th>
<th>500/525 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

Intermittent Ratings

<table>
<thead>
<tr>
<th>UL/CSA/NOM 50/60 Hz</th>
<th>125/250 Vac</th>
<th>500 Vdc</th>
<th>480 Vac</th>
<th>480 Vac</th>
<th>600 Vac</th>
<th>600 Vac</th>
<th>500/525 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

Connections/Terminiations

<table>
<thead>
<tr>
<th>Unit Mount</th>
<th>I-Line®</th>
<th>Rear Connection</th>
<th>Drawout</th>
<th>Optional Lugs</th>
<th>Unit Mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Accessories and Modifications

<table>
<thead>
<tr>
<th>Shunt Trip</th>
<th>Undervoltage Trip</th>
<th>Auxiliary Switches</th>
<th>Alarm Switch</th>
<th>Motor Operator</th>
<th>Handle Operators</th>
<th>Handle Padlock Attachment</th>
<th>Handle Mechanical Interlocks</th>
<th>Optional GF Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Trip System Type

<table>
<thead>
<tr>
<th>Thermal-magnetic</th>
<th>Instantaneous-only (MCP)</th>
<th>Molded Case Switch (Automatic)</th>
<th>Electronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>(3P Unit Mount) Dimension</th>
<th>Height IN (mm)</th>
<th>Width IN (mm)</th>
<th>Depth IN (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.4 (163)</td>
<td>4.1 (104)</td>
<td>3.4 (86)</td>
</tr>
</tbody>
</table>

▲ Not available in HD and HG two-pole rating (2-pole module)
■ 2-pole in a 3-pole module.

For **Branch Breaker Series Ratings**

see http://www.lyntec.com/139-0407_Series_Ratings.pdf
<table>
<thead>
<tr>
<th>LynTec - NQOD Series Ratings</th>
<th>This page contains UL Tested and Certified series combination ratings for panelboards. These ratings apply to either an integral main located in the Class 1630, 1670 Series Ratings</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maximum System Voltage AC</th>
<th>1Ø</th>
<th>2Ø</th>
<th>3Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>240V</td>
<td>15–20 A</td>
<td>20–40 A</td>
<td>30–60 A</td>
</tr>
<tr>
<td>600V</td>
<td>15–20 A</td>
<td>20–40 A</td>
<td>30–60 A</td>
</tr>
<tr>
<td>1000V</td>
<td>15–20 A</td>
<td>20–40 A</td>
<td>30–60 A</td>
</tr>
<tr>
<td>2000V</td>
<td>15–20 A</td>
<td>20–40 A</td>
<td>30–60 A</td>
</tr>
</tbody>
</table>

- Maximum Fuses
 - 2Ø: 2000 A Class T6
 - 3Ø: 2000 A Class T3

- 65k DJ 400 A

- 800 A Maximum

- Maximum Fuses

- Maximum Fuses
Instruction Bulletin

QO-PL (Plug-on), QOB-PL (Bolt-on) Powerlink® Remotely Operated Circuit Breakers
(Use in Type QO Load Centers and Type NQO, NQOB, and NQOD Panelboards)
Retain for future use.

REQUIREMENTS

Remotely Operated Circuit Requirements

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, BURN, OR EXPLOSION.

When servicing a branch circuit fed by a remotely operated circuit breaker, move handle of remotely operated circuit breaker to OFF position. Do not rely on remote operation to open circuit breaker.

Failure to follow these instructions will result in personal injury or death.

CIRCUIT BREAKER INSTALLATION

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

• Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E.

• This equipment must be installed and serviced only by qualified electrical personnel.

• Turn off all power supplying this equipment before working on or inside equipment.

• Always use a properly rated voltage sensing device to confirm power is off.

• Replace all devices, doors, and covers before turning on power to this equipment.

Failure to follow these instructions will result in death, or serious injury.

POWERLINK® QO(B)-PL Remotely Operated Circuit Breakers require a power supply capable of delivering at least two amperes at 24 Vdc for a minimum of 50 milliseconds. One-, two-, and three-pole circuit breakers all have one internal motor, and power requirements are the same regardless of the number of poles and ampere ratings.

The required power supply ampacity and control device contact rating are determined by the number of circuit breakers to be switched simultaneously (i.e., four circuit breakers switched simultaneously require a power supply and a control device contact rated 8 amperes minimum). The control device may be either a normally-open (NO)/normally-closed (NC) contact; a single-pole, double-throw switch (SPDT); or other three-wire control device.

1. Turn off all power supplying this equipment before working on or inside equipment.

2. Before installing circuit breaker turn circuit breaker handle to OFF position.

3. Remove panelboard cover and deadfront. Verify power is off with voltage meter before proceeding.

Installation of circuit breaker into panelboard/load center (refer to figure below)

4. Except for remotely operated connections, QO(B)-PL remotely operated circuit breakers are installed in a panelboard/load center the same as conventional QO(B) circuit breakers.

Connection of remotely operated circuit (refer to the figure on next page)

5. Assure that power supply and control device meet requirements listed under “Remotely Operated Circuit Requirements.”
CIRCUIT BREAKER INSTALLATION

CAUTION

HAZARD OF CIRCUIT BREAKER DAMAGE.

Connect the 24 Vdc remote control wiring as shown on this page.

Failure to follow these instructions can permanently damage the remotely operated circuit breaker.

LynTec

part numbers

MB series motorized circuit breakers (Snap-On)

May be used in LCP, LCP, MSP, SLC or SP series panels.

BMB series motorized circuit breakers (Bolt-On)

Use only in LCP, MSP or SP panelboards.

All BMB & MB series breakers have Square D part number suffix of -5393 indicating a special 60 inch lead length for remote control wires required to connect to LynTec control boards in low voltage cabinet.

** = Stocked items

BMB-15 = 15 Amp, Square D QO-115PL-5393

BMB-15 = 15 Amp, Square D QO-115PL-5393

BMB-20 = 20 Amp, Square D QO-120PL-5393

BMB-20 = 20 Amp, Square D QO-120PL-5393

BMB-30 = 30 Amp, Square D QO-130PL-5393

BMB-30 = 30 Amp, Square D QO-130PL-5393

Two pole motorized - call for pricing & delivery

MB-215 = 15 Amp, Square D QO-215PL-5393

MB-215 = 15 Amp, Square D QO-215PL-5393

MB-220 = 20 Amp, Square D QO-220PL-5393

MB-220 = 20 Amp, Square D QO-220PL-5393

MB-230 = 30 Amp, Square D QO-230PL-5393

MB-230 = 30 Amp, Square D QO-230PL-5393

40A, 50A or 60A, Two pole also available on Special Order

Three pole motorized - call for pricing & delivery

MB-315 = 15 Amp, Square D QO-315PL-5393

MB-315 = 15 Amp, Square D QO-315PL-5393

MB-320 = 20 Amp, Square D QO-320PL-5393

MB-320 = 20 Amp, Square D QO-320PL-5393

MB-330 = 30 Amp, Square D QO-330PL-5393

MB-330 = 30 Amp, Square D QO-330PL-5393

LynTec also stocks **UMB** & **BUMB** (un-motorized) QD series circuit breakers including HM (High Magnetic). Recommended for eliminating nuisance trips in high inrush applications.

[All BMB & MB series are HM breakers.]

800-724-4047

LynTec • **www.LynTec.com**

8401 Melrose Dr., Lenexa, KS 66214, USA
Voice 913-529-2234 • Fax 888-722-4157 or 913-529-4157
LynTec overprint 139-0216-08.2 9/23/06

6. All wiring and splicing must comply with applicable code requirements for Class 1 circuits. Refer to paragraph 373-8 and article 725 of the National Electrical Code.

7. Three #18 AWG control wires are attached to the remotely operated circuit breaker for connection to the power supply and remote control device and should be cut to the required length to reach the splice connections. Use #18 AWG or larger conductors with 600 V insulation and approved wire connectors for splices.

8. Connect the black lead of the remotely operated circuit breaker to the negative (-) terminal of the 24 Vdc power supply. Connect the red lead of the remotely operated circuit breaker to the positive (+) terminal of the 24 Vdc power supply. Connect the white lead of the remote control device. The remote control device provides connections between either positive or negative potential of the power supply and the white wire of the remotely operated circuit breaker, as appropriate.

9. Applying the positive potential of the power supply to the white wire (contact closure between the red wire and white wire) will operate the remote mechanism of the circuit breaker to the OFF position. Applying the negative potential of the power supply to the white wire (contact closure between the black wire and the white wire) will operate the remote mechanism of the circuit breaker to the ON position. A control circuit utilizing a normally open (NO) or normally closed (NC) contact is illustrated below.

NOTE: The remote mechanism will not move the circuit breaker handle. Also, the remote mechanism cannot turn power ON when the circuit breaker is tripped (VISI-TRIP® flag indicator showing) or when the circuit breaker handle is in the OFF position.

Installation of the trim and operational checks

10. Remove corresponding twist-out from panelboard trim and replace trim.

11. Turn power to panelboard on.

12. Turn remotely operated circuit breaker handle to the ON position.

13. Turn power to the remotely operated circuit on and test this circuit, turning remotely operated circuit breaker off remotely, then on remotely. If power to remote controlled circuit breaker load does not switch off and on, turn off power to remotely operated circuit and panelboard and check wiring.

NOTE: A power supply is available from Square D Company, Cat. No. QOPLPS (plug-on) or QOBPLPS (bolt-on).

Splice not normally required with LynTec supplied breakers with 60” leads.

LynTec Sequencer or DMX controller

Remote Operated Circuit Breaker

Panelboard/Load Center (Class 1 Wiring)

24 Vdc Power Supply

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

© 1991-2003 Schneider Electric All Rights Reserved